On Rational Approximations to Euler's Constant γ and to γ+log⁡(a/b)

نویسنده

  • Carsten Elsner
چکیده

The author continues to study series transformations for the Euler-Mascheroni constant γ . Here, we discuss in detail recently published results of A. I. Aptekarev and T. Rivoal who found rational approximations to γ and γ log q q ∈ Q>0 defined by linear recurrence formulae. The main purpose of this paper is to adapt the concept of linear series transformations with integral coefficients such that rationals are given by explicit formulae which approximate γ and γ log q. It is shown that for every q ∈ Q>0 and every integer d ≥ 42 there are infinitely many rationals am/bm for m 1, 2, . . . such that |γ log q − am/bm| 1 − 1/d / d − 1 4 m and bm | Zm with logZm ∼ 12d2m2 form tending to infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Approximations for Values of Derivatives of the Gamma Function

The arithmetic nature of Euler’s constant γ is still unknown and even getting good rational approximations to it is difficult. Recently, Aptekarev managed to find a third order linear recurrence with polynomial coefficients which admits two rational solutions an and bn such that an/bn converges subexponentially to γ, viewed as −Γ′(1), where Γ is the usual Gamma function. Although this is not ye...

متن کامل

Fast Algorithms for High-Precision Computation of Elementary Functions

Open problem: Is γ or exp(γ) rational ? Since the regular continued fraction gives best rational approximations, continued fraction computations can give theorems of the form: If x is rational, say x = p/q, then |q| > B for some (very large) bound B. To obtain a result like this with given bound B, we need to compute x with absolute error O(1/B2). Using this method we know that, if γ or exp(γ) ...

متن کامل

Weierstrass and Hadamard products

1. Weierstrass products 2. Poisson-Jensen formula 3. Hadamard products Apart from factorization of polynomials, after Euler's sin πz πz = ∞ n=1 1 − z 2 n 2 there is Euler's product for Γ(z), which he used as the definition of the Gamma function: ∞ 0 e −t t z dt t = Γ(z) = 1 z e γz ∞ n=1 1 + z n e −z/n where the Euler-Mascheroni constant γ is essentially defined by this relation. The integral (E...

متن کامل

An Inequality for the Psi Functions

For x > 0, let Γ(x) be the Euler's gamma function, and ψ(x) = Γ (x)/Γ(x) the psi function. In this paper, we prove that |ψ (n) (b) − ψ (n) (a)| < (b − L(a, b))|ψ (n+1) (b)| + (L(a, b) − a)|ψ (n+1) (a)| for all b > a > 0 and n = 0, 1, 2, · · ·, where L(a, b) = (b − a)/(log b − log a).

متن کامل

On the zero forcing number of some Cayley graphs

‎Let Γa be a graph whose each vertex is colored either white or black‎. ‎If u is a black vertex of Γ such that exactly one neighbor‎ ‎v of u is white‎, ‎then u changes the color of v to black‎. ‎A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that‎ if initially the vertices in Z are colored black and the remaining vertices are colored white‎, ‎then Z changes the col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009